
JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 1

A run-time framework for ensuring zero-trust state
of client’s machines in cloud environment

Devki Nandan Jha, Member, IEEE , Graham Lenton, James Asker, David Blundell, Martin Higgins,
David C.H. Wallom

Abstract—With the unprecedented demand for cloud computing, ensuring trust in the underlying environment is challenging. Applications
executing in the cloud are prone to attacks of different types including malware, network and data manipulation. These attacks may remain
undetected for a significant length of time thus causing a lack of trust. Untrusted cloud services can also lead to business losses in many
cases and therefore need urgent attention. In this paper, we present Trusted Public Cloud (TPC), a generic framework ensuring the
Zero-trust security of client machine. It tracks the system state, alerting the user of unexpected changes in the machine’s state, thus
increasing the run-time detection of security vulnerabilities. We validated TPC on Microsoft Azure with Local, Software Trusted Platform
Module (SWTPM) and Software Guard Extension (SGX)-enabled SWTPM security providers. We also evaluated the scalability of TPC on
Amazon Web Services (AWS) with a varying number of client machines executing in a concurrent environment. The execution results show
the effectiveness of TPC as it takes a maximum of 35.6 seconds to recognise the system state when there are 128 client machines attached.

Index Terms—Cloud Computing; Zero Trust; Privacy; Verification; Intrusion Detection; Trusted Platform Module

✦

1 INTRODUCTION

In the past decade, cloud computing has evolved as an
essential part of the computing paradigm. With numerous
advantages including no upfront cost, pay-per-use, improved
reliability and scalability, applications varying from enterprise
management to healthcare have started to utilise cloud services
for storage and computation purposes [1]. Typically cloud
services are managed by a third-party organisation such as
Amazon or Google with massive data centres geographically
distributed all across the globe. The data centre resources
are virtualised and offered to the clients depending on their
requests.

There are a number of challenges in utilising the remote
cloud environment. The most important of these challenges
are those related to privacy and security [2], [3]. After a client
uploads their data in the cloud, some aspects of control over
that data are lost. They are required to trust the cloud provider
and the system models under which different components of
the cloud business operate [4]. Let us consider Infrastructure
as a Service, where a service provider virtualises their physical
resources to allow multiple clients to run heterogeneous appli-
cations in virtual machines. Within this type of environment,
it is difficult to provide an absolute guarantees of privacy for
each client’s virtual machine or to prove the privacy of the
resources that are being utilised.

In order to handle privacy and security in the cloud envi-
ronment, it is important to understand the potential vulnera-
bilities a system may encounter. Various types of threats and
attacks can be possible in the cloud environment including
malware attacks, network attacks, data manipulation attacks

• D. N. Jha is with School of Computing, Newcastle University Newcastle Upon
Tyne, UK and Oxford e-Research Centre, University of Oxford, UK. Email:
dev.jha@ncl.ac.uk,

• G. Lenton, J. Asker & D. Blundell are with CyberHive Ltd., Newbury, UK.
Email: {graham.lenton, james.asker, david.blundell}@cyberhive.com

• M. Higgins & D.C.H. Wallom are with the Oxford e-Research Centre, Uni-
versity of Oxford, UK. Email: {martin.higgins, david.wallom}@eng.ox.ac.uk

Manuscript received ???; revised ???

and untrusted administrator [5]–[7]. On top of that, users and
administrators can also inflict some security vulnerabilities in
the underlying system. Operations such as leaked credentials,
exposed network ports, wrong security patching and unre-
solved bugs can expose the system to various attacks. Detecting
these vulnerabilities is hard and therefore may be left unde-
tected for a long time. Research shows that the average time
to detect a system compromise (Dwell Time) is currently 211
days for a middle-size cloud-based organisation. An addition
of 67 days is required to contain it thus, leading to a business
loss of on average $4.8 million per middle-sized organisation1.

To mitigate the security and privacy risks, numerous
solutions are available in the literature [8]–[10]. These can
be separated into software-based or hardware-based solutions.
Software-based solutions e.g., antivirus or antimalware, regu-
larly scan the system executables, comparing with a given
threat database and isolate or remove applications identified as
a threat. New security vulnerabilities are generated every day
and it’s hard for the software-based solutions to catch them. In
addition to this, they are not able to verify their own authentic-
ity. To overcome some of the issues, hardware-based solutions are
proposed which leverage Trusted Platform Module (TPM) chip
[11]. Since the chip is integrated with the system, the security
enforced by the TPM is hard to break. However, processing
using the TPM chip is very slow and it is not available in all
cloud environments. An alternative is virtual/software TPM
which is based on the TPM specifications and can recognise any
system state change. However, they are not able to protect their
own keys in case of a security attack [12]. Unfortunately, these
traditional methods predominantly rely on perimeter-based
defences i.e., they are mostly static and establish a trusted zone
within the system/network and assume that entities inside this
perimeter are inherently trustworthy. Given the growth of fast
and dynamic applications in the cloud environment, traditional
perimeter-based security becomes undesired.

1. https://www.ibm.com/uk-en/security/data-breach

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 2

Maintaining trust is one of the main concerns in the cloud
environment. Recently, zero-trust security concept has been
introduced which emphasises on the resource protection based
on the principle that trust is never implicitly granted and must
be continuously verified. However, most of the mainstream
zero-trust architectures primarily focus on network security
2,3. A few previous works have also addressed some related
aspects of system security for zero-trust frameworks [13]–
[16]. However, run-time detection of security threats is still
a challenge. Also, it’s hard to detect attacks that bypass se-
curity protocols and firewalls. Moreover, user/administrator-
generated faults, which possibly lead to significant security
risks, also need to be detected and resolved. In particular, this
paper aims to answer the following research question:

How to detect if a system has been accidentally or maliciously
altered at run-time?

To answer this question, we propose a novel framework,
Trusted Public Cloud (TPC). It is based on the zero-trust frame-
work which continuously tracks and analyses the client ma-
chine to determine if it is operating in either “Trusted” or
“Untrusted” state. It is intended to be used by the local cloud
administrator, such as the IT manager of an organisation. TPC
framework stands out by offering robust protection against a
wide range of threats, including those that manage to bypass
conventional security protocols and firewalls. TPC ’s strength
lies in its ability to safeguard the system from internal threats
that may arise due to actions by users or administrators, pro-
viding a layer of security that is often overlooked in the exist-
ing frameworks. Moreover, TPC can complement the existing
network-specific zero-trust solutions and any such framework
can be easily integrated.

We evaluated our TPC framework with an extensive real-
cloud experiment to show it can detect any undesired activity
in the application execution at run-time. We also evaluated the
scalability of TPC to show the flexibility and efficacy for a real
production-ready environment.

In summary, the main contributions of this paper are as
follows:

• We have designed and developed a novel framework,
Trusted Public Cloud (TPC) that analyses the trust state of a
client machine at any instance of time using the zero-trust
principle.

• A user interface is designed and implemented for the
addition of a client machine to the TPC. It also allows the
continuous run-time tracking of the client machine state.

• An extensive experiment is performed in the AWS and
Azure cloud environment with the TPC components run-
ning in a cluster configuration.

The paper is organised as follows. Section 2 discusses the
background and recent related works. Section 3 presents a
formal model of the problem addressed giving the desirable
properties of a proposed framework. Section 4 explains the
architecture of TPC and discusses the detailed system activities
while Section 5 presents the experiment evaluation. Before con-
cluding the paper in Section 7, Section 6 gives some discussion
and future works.

2. https://cloud.google.com/beyondcorp
3. https://www.paloaltonetworks.com/zero-trust

2 BACKGROUND AND RELATED WORK

In this section, we review the recent related works on run-
time monitoring, intrusion detection systems and trust state
analysis.

2.1 Run-time Monitoring
Run-time system monitoring offers the live system state in-
formation including throughput, response time, CPU usage
and memory usage. Monitoring the system metrics ensures
that the service level agreements are met. It can also help in
automating run-time scalability. Numerous works have been
proposed by academia and industry to monitor the cloud
system. [17]–[19] focuses on monitoring the run-time state of
a cloud VM giving the system performance. [20], [21] adds the
container performance along with the VM at any instance of
time. [22], [23] are specific for monitoring the storage resources
while [24], [25] focuses on the big-data system and illustrates
the system performance. [26]–[28] are a few industry-based
monitoring systems available to detect the system behaviour at
run-time. Most of these systems collect the system performance
information while ignoring the security information of the
system.

A few works can also provide security-specific monitoring
[7], [29]–[31]. In addition to this, PerSecMon monitors the
combined performance and security information of the system
[32]. Security monitoring requires kernel-level information to
be collected at run-time. A kernel-module-based system is pro-
posed in [33], [34] to gain the system insight while an advanced
e-BPF-based system is proposed in [32], [35]. Although the
given works analyse the system activity, they are not always
able to detect the anomalies. Since an anomaly or attacker can
manipulate system measurements, relying solely on system
monitoring may not provide an accurate assessment of the
system’s state. Therefore, additional verification mechanisms
are required to ensure the integrity of the monitoring process.

2.2 Intrusion Detection
The main purpose of Intrusion Detection in the cloud envi-
ronment is to identify malicious behaviour at an early stage.
The methods either detect a network-based intrusion or a
host-based intrusion. Below is a summary of recent solutions
presented to detect these threats.
Network-based intrusion Detection (NIDS). NIDS monitors
the network traffic and safeguards against malicious requests.
Traditionally, different heuristic algorithms such as Swarm
intelligence, Artificial Bee algorithm, and Genetic Algorithms
[36], [37] are used to detect such anomalies. Most of these
methods match the request based on pre-defined anomalies or
they try to find the odd one out among them. However, these
methods are not able to detect new types of attack requests.
To overcome this issue, many frameworks are proposed using
machine learning and deep learning models [38], [39]. The
frameworks are trained with the given anomalies data which
is capable of detecting some unknown anomalies. The pro-
posed frameworks commonly used Long Short Term Memory,
Auto Encoders, Shapley Additive Explanations [40], [41]. A
few works also propose to check the network traffic using
Provenance-based methods [42].

Although the proposed methods are capable of detecting
simple network intrusions, they are not able to detect en-
crypted packets transmitting through the network. Also, NIDS
is not able to detect any internal attacks.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 3

Host-based Intrusion Detection (HIDS). HIDS monitors the
system logs to discover any intrusive activities. To discover
host intrusion, various data mining and machine learning algo-
rithms have been implemented. [43], [44] uses a classification
and clustering approach while [45] uses the sequence time-
delay embedding and hamming distance-based approach to
find the anomaly. These methods monitor the system calls
and generate some alarming messages when it detects any
abnormal activity. Since the system metrics are generated for
every single process execution, it is hard to manage such a
large set of metrics. Moreover, the captured system metrics
are not robust in case of a persistent threat as the intruder
can manipulate the system logs to make the system appear
uninterrupted [46], [47].

2.3 Trust State Analysis
Establishing trust in the cloud environment is a major concern
for users. Multiple frameworks have been proposed in past to
analyse the trust state of the cloud. [48], [49] uses the monitored
security measurement metrics to specify the trust state. A third-
party evaluation system is used in [50]–[52] where either an
independent evaluating system or a consumer-based system
is used. Trusted Platform Component (TPM) secure booting
can also help in guaranteeing the trusted state [53], [54].
These systems rely on the trusted computing infrastructure
(e.g., TPM, TXT) to verify the measurements generated by
the system. However, the public cloud lacks a physical TPM.
Software TPMs4 can be available but the secret key of software
TPM can easily be manipulated thus lacking a concrete trust
guarantee.

2.4 Zero-Trust Frameworks
Recently, there has been an increase in zero-trust architecture
(ZTA) from industry such as Google BeyondCorp5, Palo Alto
Zero Trust6 and Cisco Zero Trust7 which offer organisations
a more practical and step-by-step approach for application
deployment. However, most of these existing ZTAs have pri-
marily concentrated on network security with limited efforts
directed towards implementing a zero-trust framework for
system security. A few previous works have also addressed
some related aspects of system security for zero-trust frame-
works. [13], [14] offers device and connection security for IoT
systems. [15] propose a zero-trust framework for mobile-edge
computing where a new component/user is validated using
fingerprint and blockchain. [16] also utilises a zero-trust frame-
work to dynamically control user’s permissions to provide
endpoint security. [55] propose S-ZAC to offer an access control
mechanism for service mesh-based solutions in the cloud using
SGX. However, none of the proposed frameworks consider the
threats posed by the internal processes or users.

3 SYSTEM OVERVIEW

In this section, we first present the system description and
formal definition of trust definition in the cloud environment
(Section 3.1). Using the formal model, we define our problem
and explain the desirable properties in a proposed solution
(Section 3.2).

4. https://github.com/stefanberger/swtpm
5. https://cloud.google.com/beyondcorp
6. https://www.paloaltonetworks.com/zero-trust
7. https://www-cloud.cisco.com/site/us/en/solutions/security/zero-

trust/index.html

3.1 Formal Model

Let C be a cloud service provider offering client machines
V = {V1,V2,V3, ...}. The client machines can either be a virtual
machine ν or a container κ i.e., Vi ∈ [ν, κ]. Each client machine
Vi is employed by a user Uj where Uj |j = {1, 2, ...} ∈ U . A
user Uj executes α set of applications A = {A1,A2, ...,Aα}
on the employed client machine Vi. The execution of an ap-
plication Ak interacts with a set of files Fk ∈ F . F can be a
collection of user files Fµ =

∑
n f

µ
n |n = {1, 2, ...} and system

files F s =
∑

m fs
m|m = {1, 2, ...} i.e., F = F s ∪ Fµ. The

interaction of an application and the files creates an injective
mapping Aj → Fo where Fo is a subset of F and is given as
Fo =

∑
l1,l2

(fµ
l1
∪ fs

l2
) ⊆ F .

Consider a security vulnerability vk ∈ V caused by an
entity El ∈ E . The entity El can be caused by either an external
entity Eex or an internal system user E in. The vulnerability V
affects the execution of an application Aj in undesired ways.
It either tries to read or update the system and/or user files
Fo. Consider Fv ⊆ Fo represents a set of files affected by the
vulnerability. Finding Fv can help in finding the vulnerabilities.

Based on whether a vulnerability is present in the system,
the state of a client machine Vi is defined as trusted T or
untrusted U i.e., S(Vi) ⊢ T and S(Vi) ⊢ U respectively. A
client machine Vi is defined as trusted if there is no known
vulnerability vk ∈ V found at any time t as given in equation
1. Similarly, a client machine Vi is said to be untrusted, if there
exist one or more known vulnerabilities vk ∈ V as given in
equation 2.

S(Vi) ⊢ T ⇐⇒ ∀t(∄vk) (1)

S(Vi) ⊢ U ⇐⇒ ∃t(∃vk) (2)

Finding the state of a client machine S(Vi) at any time
instance t to know whether the system is trusted is challenging.

3.2 Desirable Properties

The problem addressed in this paper is to find all K vulner-
abilities

∑K
k=1 vk in the client machine Vi in a minimal time.

The proposed framework needs to have the following desirable
properties:

• Exhaustive system monitoring: The proposed framework is
desired to capture the system measurements comprehen-
sively. In addition to this, the captured measurements need
to have detailed information about the process and files.

• Adaptive monitoring: The proposed system needs to be
adaptive as all the files are not equally important. Since
monitoring can generate a huge amount of data that need
to be evaluated, setting an adaptive scheme constrains
the volume of generated data thus making the evaluation
faster.

• Chain of trust: There is some case scenario where an at-
tacker changes the value of a file from say A to B and
then at sometime later loads A, making it look like it is
unchanged. Monitoring the file value only makes it hard
to recognise the intrusion. Thus it is important to keep a
chain of trust so that any change can be easily identified.

• Fast: Finding any vulnerability affecting the client machine
in a minimal time is a key requirement of the proposed
framework.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 4

Kernel Module

Pr
od

uc
er

C
on

su
m

er

TPM

Trust Agent

Client Machine 1
Verification

Cluster

In
cl

ud
e

Li
st

Ex
cl

ud
e

Li
st

Al
lo

w
 L

is
t

MCP

Certifier

Buffer

Queue

Storage Unit

AMP

C
ER

TI
FI

C
AT

E
A

U
TH

O
R

IT
Y

Fig. 1: System Architecture of TPC.

4 PROPOSED APPROACH

Given the desirable properties, we propose and implement
TPC. This section discusses the architecture and the implemen-
tation details of TPC.

4.1 TPC Architecture

TPC consists of 4 main components a) Kernel Module, b) Trust
Agent, c) Trusted Platform Module and d) Verification Cluster.
The first three components are executed on all connected
client machines while the Verification Cluster is a centralised
server communicating with the client machines. Figure 1 illus-
trates the schematic architecture of TPC and the dependencies
among various components. The details of each component are
given below.

4.1.1 Kernel Module
Kernel Module component monitors the system and captures the
measurements. The measurements are represented in the form
of an extended Integrity Measurement Architecture (IMA) list
[53]. The extended IMA list captures detailed information
about all the files and processes executing on the system.
The measurements are stored in a circular memory-mapped
buffer. When a file is opened for reading/updating, the kernel
generates a hash of the file contents which is also added to the
buffer. Figure 5 show a sample measurement captured by the
Kernel Module. As shown in Figure 5, a measurement consists
of an index, inode, process id, process name, parent process
details, used details, timestamp with file hash and digest value.

4.1.2 Trust Agent
Trust Agent is the main component of TPC. It reads the
measurements from the buffer and interacts with the TPM
and Verification Cluster. The first operation performed by Trust
Agent is to enrol the client machine with the Verification Cluster.
The details of enrolment are given in Section 4.2.1. After the
successful enrolment, it initiates the Kernel Module and starts
up the TPM.

It has three elements Producer, Consumer and Queue. Both
Producer and Consumer are asynchronous components access-
ing the central Queue. The Producer retrieves the measurements
from the buffer and creates a measurements batch. It also
communicates with the TPM to get the digest value of each
measurement and populate the “dig” field with the TPM

{
"index":1,
"dig":"fcf3b6e290b9ca63fad2262e39e7e6aed6f7badd1ba059fdc4b9

caa063d29dd6",
"fh":"f110ab97b9fcd04eb9da6ad67676aaa505cad1adff53a1768e0b9

2e09c2d7250",
"ino":2894068,
"pid":2601,
"pname":"cat",
"ppid":2588,
"ppname":‘‘bash",
"uid":0,
"euid":0,
"gid":0,
"egid":0,
"ts":"2023-3-09T16:54:37.697",
"filename":"/opt/demo/test.doc"

}

Fig. 2: A sample measurement collected by the Kernel Module

obtained digest value. The Consumer accesses the measurement
batch and adds a TPM signature. The batch is later sent to
the Verification Cluster for evaluation. This process is repeated
continuously.

4.1.3 Trusted Platform Module (TPM)
TPM is a cryptographic co-processor chip included on almost
every enterprise personal computer, server, and laptop mother-
board. However, it may not be available for the public cloud’s
virtual machine where a software TPM/virtual TPM/SGX-
embedded TPM can emulate similar behaviour. An industry
consortium, Trusted Computing Group (TCG) provides the
specification of the TPM. TPC uses TPM to perform two main
functions, a) creating a digest for the measurement and b)
performing the signature operation on the measurement batch.
For each measurement, Platform Configuration Register (PCR)
is used to create a digest using pcrextend. PCR store crypto-
graphic hashes of system measurements to ensure the integrity
and secure boot of the platform. The updated PCR value is
read using pcrread and the obtained value is returned to
the Producer to be added to the measurement’s “dig” field.
Similarly, for the given batch, TPM uses the key handle to create
a signature. The signature is returned to the Consumer and is
appended to the batch. The functionalities of TPM are accessed
using the TPM 2.0 TSS Enhanced System API (ESAPI)8.

4.1.4 Verification Cluster
Verification Cluster enrols a client machine and verifies the
measurement received from the enrolled client’s machine. It
has 5 elements working together to evaluate the client ma-
chine’s status. The first element is a collection of three lists
namely: Include List, Exclude List and Allow List. Include List and
Exclude List contain the system directory to be included and
excluded for verification respectively. Since, files and processes
are typically organised within system directories e.g., /dev or
/usr, TPC provides users with the flexibility to manage which
directories are prioritised for verification through the use of
an Include List and an Exclude List. These lists allow users
to specify which directories should be included or excluded
from the verification process, thereby indirectly controlling the
evaluation of the files and processes within those directories.
This ensures that the monitoring process is adaptive and can
be tailored to prioritise the most critical files and processes

8. https://github.com/parallaxsecond/rust-tss-esapi

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 5

while excluding those seem less important. Allow List contains
a list of file hash to validate the measurements. The file hash is
computed at the client machine’s boot time and stored in the
Allow List. The hash of measurement files is always matched
with the hash values stored in the Allow List. The Measurements
Configuration Processor (MCP) manages and configures these
three lists. The lists are created and associated with the client
machine at the time of enrolment. An administrator can also
update these lists at run-time in case of any legitimate change
happened on the client machine.

Storage Unit stores the measurements received from the
client’s machine. The measurements can be parsed and re-
trieved by querying the storage unit. Allowed Measurements
Processor (AMP) is the component which processes the batches
of measurements to determine the trust status of the client
machine. The AMP not only compares the file hash but also
validates the measurement digest and signature to check if
the measurements are valid. The verification process details
are given in Section 4.2.3. To bring an extra layer of trust, the
Certifier provides a unique digital certificate for each client ma-
chine. The certificate is generated with the help of an external
Certificate Authority.

A User Interface is available to interact with the Verification
Cluster. An administrator can easily manage the client ma-
chines where a machine can be enrolled, updated, or deleted.
An administrator can also view the details of a client machine
including the measurements’ details, timestamp and client
machine’s state.

Verification Cluster can handle multiple client machines.
Since the Verification Cluster is inherently deployed across mul-
tiple availability zones, there is no single-point failure.

4.2 System Activities

This section describes the system activities performed by TPC.

4.2.1 Enrolment

Each Client Machine Vi needed to be enrolled with the Ver-
ification Cluster V C prior to the verification process. In the
beginning, an administrator creates a machine ID (id) and a
token (tk). The id, tk and the Verification Cluster address are
sent to the Client Machine for later use to communicate. The
Client Machine, Vi configures the Trust Agent with the given
id and performs an enrolment process with the Verification
Cluster. This process enforces trust between the Client Machine
and Verification Cluster.

The Client Machine first checks whether the system is al-
ready enrolled or not. If it is not enrolled, the Client Machine’s
private key ρ(Vi) is used to generate a certificate signing
request (CSR) σ(Vi). The CSR is then sent to the Verification
Cluster requesting a certificate. First, the Verification Cluster
extracts and saves the public key ϱ(Vi) from the CSR. The Ver-
ification Cluster is associated with a public Certificate Authority
CA. After receiving the CSR, Verification Cluster sent it to the
CA which generates and returns a certificate ξ(Vi). Verification
Cluster saves a copy of the certificate before sending it back to
the client machine. The pseudo-code for the enrolment process
is given in Algo 1.

9. =⇒: Remote communication, −→: Internal communication

Algo 1: Client enrolment process

Input: ρ(Vi) - Private key of the client machine Vi, V C
- Verification Cluster, CA - Certificate Authority

Output: ξ(Vi) - certificate
1 //Check if the Agent Machine is already enrolled
2 if ξ(Vi) = NULL then
3 // Generate Certificate Signing Request (CSR) with the Client

Machine’s Private Key

4 ρ(Vi)
generates−−−−−−→ σ(Vi) 9

5 // Send CSR to the Verification Cluster

6 Vi
σ(Vi)
===⇒ V C

7 // Verification Cluster extracts public key from the CSR and
saves a copy

8 σ(Vi)
extracts−−−−−→ ϱ(Vi)

9 // Request Certificate Authority to get the Signature

10 V C
σ(Vi)
===⇒ CA

11 CA
ξ(Vi)
===⇒ V C

12 // Save a Copy of the Signature and send it to the Client
Machine

13 V C
ξ(Vi)
===⇒ Vi

14 end

4.2.2 Measurements’ Digest and Signature Generation
After the successful enrolment of a client machine Vi, the
Kernel Module monitors and captures the system measurements
Ms|s ∈ {1, 2, ...}. For each measurement Ms, a digest Mdig

s

is generated by the TPM. The TPM uses pcrextend to generate a
digest value for the selected PCR as given in equation 3. Here,
|| represents a data concatenation process. The digest Mdig

s is
read using TPM’s pcrread for the selected PCR and is appended
to the measurement as given in equation 4.

PCRnew ← pcrextend(PCRold||Ms) (3)

Mdig
s = pcrread(PCR) (4)

After collecting a set of measurements, a batch Bl =∑Γ
s=0Ms is constructed. A TPM signature Bsigl is computed

and added to the batch before sending the batch to the Verifi-
cation Cluster. The signature uses the TPM’s internal signature
key as shown in equation 5. The whole process is repeated for
all the measurements asynchronously.

Bsigl = sign(Bl) (5)

4.2.3 Verification
Each Client Machine has a state S(Vi) which is either Trusted
T or Untrusted U. The state is determined by a comparison of
the measurements submitted by the client’s machine Vi. The
initial state is always Trusted and the later state is determined
depending on the upcoming measurements. The verification
process is divided into three parts as given below:

1) Verify the validity of Client Machine: The first step of ver-
ification is to check whether the Client Machine is already
registered. The Verification Cluster checks the machine ID
(id) and the certificate (η(Vi)). Failure of matching these
leads to irrecoverable untrusted status Vi.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 6

Algo 2: Verification process
Input: Bl ∈ B - Batch of measurements submitted by

the Client Machine Vi,
Output: S(Vi) - State of the Client Machine Vi

1 // Verify the validity of Client Machine
2 Extract id and η(Vi) from Bl
3 if ! (id & η(Vi) stored) then
4 exit (irrecoverable error)
5 end
6 // Verify the crypto operation
7 Extract Bsigl from Bl
8 if !Verified(Bsigl using ϱ(Vi)) then
9 Set S(Vi) to U

10 Exit (irrecoverable error)
11 end
12 for ∀Ms ∈ Bl do
13 ExtractMdig

s

14 if !Verified(Mdig
s) then

15 Set S(Vi) to U
16 Exit (irrecoverable error)
17 end
18 end
19 // Verify the measurements hash
20 for ∀Ms ∈ Bl do
21 if (Ms ∈ Include List &Ms /∈ Exclude List) then
22 ExtractMhash

s

23 if !exists(Mhash
s in Allow List) then

24 Set S(Vi) to U
25 Add a flag F to revisitMs

26 end
27 end
28 end

2) Verify the crypto operation: If the Client Machine’s validity
is satisfied, the next step is to verify the cryptography op-
erations performed by the TPM . First, the measurements
batch Bl is parsed and the signature Bsigl is extracted. The
saved public key ϱ(Vi) during the enrolment process is
used to validate this. If the validation is successful, the
measurements batch is parsed further and each measure-
ment is evaluated. For each measurement Ms, the digest
Mdig

s is extracted and verified. Failure to verify either
signature Bsigl or digest Mdig

s leads to making the Client
Machine untrusted. Since the digest Mdig

s guarantees a
chain of trust, failure to verify the digest or signature leads
to irrecoverable untrusted status.

3) Verify the measurement hash: Once the cryptography
operations are validated, the measurements are filtered
according to the associated Include List and Exclude List.
The hash value of each measurement Ms in the Include
list is compared with the Allow List. If the measurement
fails to satisfy, a flag is associated with the measurement
and the Client Machine is made Untrusted. This type of
failure is recoverable as it also pings the Administrator to
verify the cause of failure. The Administrator can verify
the reason of failure and either make it Trusted or leave it
Untrusted.

The pseudo-code for the verification process is given in
Algo 2.

Figure 3 shows the state transition diagram of a Client

Untrusted Trusted

4

1 3

2

Fig. 3: Client Machine state transition diagram.

Machine. The initial state of the client machine S(Vi) is always
Trusted. The state S(Vi) remains Trusted if the measurements
are validated (transition 1). If the changes do not match, the
machine state is set to Untrusted and notifications are sent to
the administrator (transition 2). The reason for the failure is
then analyzed. If the issue is due to the validity of the client
or a crypto operation, the machine state remains Untrusted
(transition 3). However, if the analysis determines that the
changes are valid, the machine state is updated to Trusted
(transition 4). .

4.3 Implementation

Trust Agent is implemented in Rust while the TPM is accessed
using Rust implementation for TPM 2.0 TSS ESAPI. Kernel
Module is primarily implemented in C. Both Trust Agent and
Kernel Module are packaged independently and made available
using apt-get to be installed on the client’s machine.

Verification Cluster is presented as an independent service
and is mainly implemented in Python. The Storage Unit of Verifi-
cation Cluster is implemented using PostgreSQL, OpenSearch and
Kafka. The MCP and AMP components of Verification Cluster are
packaged in Docker containers to be deployed independently.
All the communications are performed using Restful APIs.

5 EXPERIMENT AND ANALYSIS

In this section, we evaluate TPC for both performance and
scalability. The main focus here is to detect the machine’s
state which may be changed by the user/administrator or an
anomaly which remains undetected for a very long time.

5.1 TPC Performance Evaluation

5.1.1 Environment Setup

To evaluate the performance of TPC, we deployed the project
on Microsoft Azure. The VM configuration is Standard DC2ds
v3 with 2 vCPUs, 16 GiB RAM and 150 GiB storage. The VMs
are enabled with Intel SGX’s confidential computing features10.
The VM is installed with Ubuntu 20.04 LTS with linux-image-
5.15.0-1037-azure Kernel.

The Kernel Module and Trust Agent packages are installed
from an apt-get repository. The TPM is made available in 3
forms, a) Local, b) Software TPM (SWTPM) and c) Software
Guard Extenyion based SWTPM (SGX-SWTPM). Local is im-
plemented with the help of Rust OpenSSL library. To use
SWTPM, we leveraged Stephen Berger’s SWTPM 11 which
is based on LibTPMS and provides TPM emulators over the

10. https://learn.microsoft.com/en-gb/azure/virtual-machines/dcv3-
series

11. https://github.com/stefanberger/swtpm

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 7

systemd

python3

dbus-daemon

udisksd
networkd-dispatdirexec sshdlogrotatersyslogdcloud-initapportgrowpart

others

Fig. 4: Pie chart showing the set of processes executed at the
given time.

Socket connection. In the SGX-SWTPM case, SWTPM is imple-
mented inside Intel SGX using Occlum12. Occlum allows un-
modified applications to run inside SGX. All the dependencies
for TPM are pre-installed in the client machine before starting
the experiments.

The Verification Cluster is executed on the AWS cloud en-
vironment where each component is executed independently.
The OpenSearch, Kafka and PostgreSQL components of the
Storage Unit as discussed in Section 4.3 are executed on
Amazon OpenSearch Service, Amazon MSK and Amazon RDS
for PostgreSQL respectively. The MCP and AMP components
are executed in Amazon EKS. The execution is performed in a
fixed-size environment with minimal scaling, to allow for the
examination of individual components under workload stress
(Staging Cluster).

Workload Settings. To evaluate the project, we wrote a test
program that can create a set of files, edit and adds some
content, reads the value and finally deletes the file. A test
Include List containing a list of directories and a test Allow
List containing 100 file contents and respective hash values
are created. The program is made available as a service that
starts with the system reboot. The whole setup is executed for
2 hours and the results are evaluated.

5.1.2 TPC Performance Results

Monitoring Results. TPC is able to monitor the system per-
formance and capture the details of any processes executing
at a given time. Figure 4 demonstrates that the framework
effectively captures and reports detailed information about all
executing processes at any given time. At the test time, a total
of 490 processes are executed on the system. As the figure
shows systemd covers the highest area with a total of 37.5
% processes followed by python at 16.3 %.

TPC also captures the details of each process which can
be visualised in different formats (JSON, YAML or CSV file).
The detail of a process in JSON format is given in Figure 5.
The process details represented here extend the measurements
captured from the Kernel Module by adding numerous details
including client machine information, verification status as

12. https://github.com/occlum/occlum

{
"_index": "measurements-2023-06-01",
"_type": "_doc",
"_id": "-FKfdogBC2KXPF7qOWRg",
"_version": 1,
"_score": null,
"_source": {

"dig": "47c582ba5658a19ab8c01d75b51e28f8f71e44c3c776c9
9cab0c793a67426f4c",

"egid": 1000,
"euid": 1000,
"fh": "96be05721a72b6cf024a37ad646a5076b9a39137669603d

39ccde5e4d5b2206c",
"filename":

"/home/azureuser/cyberhive/fad/4483e8fe-275c-4610-9f30-db70568
fcc12/613_of_997_0069d235-6a9f-43f5-a92f-64db9513979e",

"gid": 1000,
"index": 82195,
"ino": 541924,
"pid": 8718,
"pname": "python3",
"ppid": 1,
"ppname": "python3",
"ts": "2023-06-01T11:02:00.085Z",
"uid": 1000,
"batch": "ef0055c0-7d20-4c6f-acc4-fa8034b54c09",
"sequence": 12,
"amp_matched": true,
"eval_ts": "2023-06-01T11:02:06.338429",
"eval_id": "083028e9-77b0-4135-96c2-9b2f8efa3933",
"machine": "fc1f8541-536d-4335-bc84-214fe01af7c8",
"amp_config_id": "927f0c02-bfe0-4219-a8ad-47d0cd582bed

",
"amp_config_type": "includelist"

},
"highlight": {

"machine": [
"@opensearch-dashboards-highlighted-field@fc1f8541-536d-4335-

bc84-214fe01af7c8@/opensearch-dashboards-highlighted-
field@"

]
},
"sort": [

1685617326338
]

}

Fig. 5: Details of a measurement in JSON after verification
process in the Verification Cluster

13
:0

0

13
:1

5

13
:3

0

13
:4

5

14
:0

0

14
:1

5

14
:3

0

14
:4

5

15
:0

0

Time

0

200

400

600

800

1000

Pr
oc

es
s C

ou
nt

Fig. 6: Number of processes executing for the experiment
duration.
well as verification time. Figure 6 shows the total number of
processes executed during the experiment duration.
Verification Time. Figure 7a shows the average time to verify
the client machine in a minimal and maximal load condi-
tion while varying the TPM types (Local, SWTPM and SGX-
SWTPM). For the minimal load scenario, we observed that all
three cases exhibited similar processing times, 2.56, 3.78 and

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 8

Local Swtpm SGX-Swtpm
TPM type

0

10

20

30

40

50

60
Av

er
ag

e
Ti

m
e

(in
 S

ec
)

Minimal load
Maximal load

(a)

Local Swtpm SGX-Swtpm
TPM type

0

10

20

30

40

50

60

70

80

Av
er

ag
e

Ti
m

e
(in

 S
ec

)

Trusted
Untrusted

(b)

Fig. 7: Figure showing the average time to verify the client machine in (a) varying load conditions (b) for trusted and untrusted
measurements
3.81 seconds for Local, SWTPM and SGX-SWTPM respectively.
However, under maximal load conditions, we noticed that
Local and SWTPM demonstrated comparable processing times
of 2.60 and 4.49 seconds respectively, while SGX-SWTPM
exhibited a higher processing time of 47.010126 seconds. This
increased processing time in SGX-SWTPM can be attributed to
the queuing delay as the hashing and signing procedures, in
this case, involved transferring the data to SGX, necessitating
multiple layers of data transfer.

It is important to emphasize here that although SGX-
SWTPM had the highest processing time, it is the most secure
method as none of the data is openly accessible while the
system is under execution. This highlights the trade-off be-
tween processing time and data security, wherein SGX-SWTPM
prioritizes enhanced security measures over faster processing.
Additionally, it is worth noting that the maximal load condi-
tion, where the processing time differences were observed, is
not a common occurrence. While this condition may not be
prevalent in practical scenarios, it is still relevant to explore and
understand its implications for the system’s performance. In
future work, we are planning to have a nested TPM execution
using SGX-SWTPM with Local or SWTPM to provide a similar
range of security in an effective time period.

We conducted an additional analysis comparing the trusted
and untrusted sub-cases within the three main cases. As shown
in Figure 7b, similar to the previous findings, we found that
SGX-SWTPM exhibited a higher processing time due to the
reasons mentioned earlier. On the other hand, the processing
times for the trusted and untrusted sub-cases in cases Local
and SWTPM were comparable.

An interesting observation from this analysis is that the
untrusted sub-cases had higher processing times compared to
their trusted counterparts. This is because the untrusted sub-
cases required querying the Allow List list indicies to deter-
mine if the measurements hash already existed. The process
of exploring the entire Allow List consumes additional time.
However, for the trusted case, the measurement hash is already
there which in the worst case only need to search for the whole
list.

2 4 8 16 32 64 128
Numbers of client's machines

0

10

20

30

40

50

60

70

Ti
m

e
(in

 S
ec

)

Average
Standard Deviation

Fig. 8: Variation of evaluation time with an increasing number
of client’s machines

5.2 TPC Scalability Test

5.2.1 Environment Setup

To test the scalability of TPC, we deployed the project on AWS
with the t2.micro VM with 1 core CPU, 1 GB RAM and 50 GB
SSD storage. The configuration of Verification Cluster is exactly
the same as given in Section 5.1.1. The number of VM is varied
in an exponential form from 2 to 128. As the type of TPM does
not change the performance of Verification Cluster, we keep it
simple by using Local TPM for this test.

The Trust Agent, Kernel Module and Load Generator are in-
stalled with the necessary libraries on a test VM and a VM
Image is constructed. The Load Generator is set to generate
an average load. An AWS Launch Template is later defined
with the previously generated Test Image. A series of steps are
performed as follows: a) create the set of machines K and get
the ID and token, b) create in parallel all the machine instances
from the AWS Launch Template and get the IP address, update
the ID, token and Verification Cluster address in the Settings
of each machine, c) Start and run the test for the 30 minutes
time period, d) Terminate the running machines, e) Delete the

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 9

2 4 8 16 32 64 128
Numbers of client's machines

0.0

0.1

0.2

0.3

0.4

0.5
In

de
xi

ng
 L

at
en

cy
 (i

n
m

se
c)

0

5

10

15

20

25

30

35

40

In
de

xi
ng

 R
at

e
(in

 th
ou

sa
nd

s)

Fig. 9: Performance variation of OpenSearch with the varying
number of client machines

machine IDs and f) Get the results. A Python script is written to
automate these experiment steps and the results are evaluated.

5.2.2 TPC Scalability Results

Evaluation Time Variation. The results in Figure 8 show
the total time consumption against the number of machines
attached to the Verification Cluster. It is reasonable to observe an
exponential growth pattern due to the exponential increase in
the number of machines. As the number of machines increases
exponentially, the total evaluation time exhibits a linear trend
on a logarithmic scale, indicating that the evaluation time
grows at a slower rate compared to the exponential increase
in the number of machines.

It is worth noting that the observed evaluation time values
remain within reasonable limits. The fact that the maximum
time is 35.6 seconds for 128 VMs, while other configurations
have evaluation times less than 20 seconds, suggests that
the system can handle the workload effectively. These values
clearly indicate that the system’s performance is within an
acceptable range considering the computational complexity
and the number of machines involved.

VC’s OpenSearch performance. Figure 9 shows the perfor-
mance of OpenSearch in terms of indexing latency and in-
dexing rate while varying the number of client machines
connected. As the figure shows, the indexing latency remains
comparable and around 0.1 msec across varying numbers of
VMs. This indicates that the time it takes for OpenSearch
to process and index data remains stable, regardless of the
number of client machines involved. The consistent indexing
latency implies the OpenSearch on Verification Cluster is able
to effectively distribute and manage the indexing workload
across the client machines. On the other hand, the indexing
rate shows a noticeable variation with the increasing number
of machines. As the indexing rate refers to the speed at which
OpenSearch can process and index data, this observation aligns
with the expectation that a larger number of machines allows
for parallelisation and distributed processing, leading to higher
indexing rates. As the number of client machines increases
to 128, the indexing rate reaches around 36.2, which demon-
strates a substantial boost in performance.

VC’s RDS (Postgres) performance. In our evaluation of VC’s
RDS (Relational Database Service) as shown in Figure 10, we
measured the throughput by varying the number of client

2 4 8 16 32 64 128
Numbers of client's machines

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (c

om
m

its
/s

ec
)

Average
Standard Deviation

Fig. 10: Performance variation of RDS with the varying number
of client machines

2 4 8 16 32 64 128
Numbers of client's machines

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f P
ac

ke
ts

Network RX
Network TX

Fig. 11: Kafka performance variation

machines. We observed that the throughput consistently in-
creases as the number of machines increases, ranging from
33.62 for 2 machines to 892.45 for 128 machines. In the case
of RDS, the increase in throughput with the number of VMs
indicates that the system benefits from parallel processing and
the ability to distribute the workload across multiple nodes. As
the number of VMs increases, RDS can handle more requests
concurrently, resulting in higher throughput. The observed
increase in throughput from 40 to 875 demonstrates the scal-
ability and performance capabilities of RDS. This improve-
ment is particularly significant, highlighting the advantages of
leveraging additional VMs to achieve parallel processing and
increase system throughput.

VC’s Kafka performance. Next, we evaluated the perfor-
mance of Kafka as shown in Figure 11. In this evaluation,
we focused on measuring and plotting the Network receive
(RX) and Network transmit (TX) metrics. The figure shows
a slight increase in both values as the number of machines
increases. Specifically, for network RX, the value varies from
21.07 packets for 2 machines to 43.22 packets for 128 machines,
while for network TX, the value ranges from 66.12 packets for 2
machines to 78.57 packets for 128 machines. The slight increase
in network RX packets signifies that VC’s Kafka’s ability to
handle incoming data scales well as the number of machines

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 10

2 4 8 16 32 64 128
Numbers of client's machines

2

4

6

8

10

12

CP
U

Us
ag

e
(%

)

60

65

70

75

80

85

90

95

100

M
em

or
y

Us
ag

e
(in

 G
iB

)

(a) CPU and memory usage for varying client machine

2 4 8 16 32 64 128
Numbers of client's machines

0

50

100

150

200

Ba
nd

wi
dt

h
(in

 K
B)

Receive BW
Transmit BW

(b) Receive and transmit bandwidth for varying client machine

Fig. 12: Performance of AMP processors with the varying number of client machines

2 4 8 16 32 64 128
Numbers of client's machines

1.6

1.8

2.0

2.2

2.4

CP
U

Us
ag

e
(%

)

50

52

54

56

58

60
M

em
or

y
Us

ag
e

(in
 G

iB
)

(a) CPU and memory usage for varying client machine

2 4 8 16 32 64 128
Numbers of client's machines

0

5

10

15

20

25

Ba
nd

wi
dt

h
(in

 K
B)

Receive BW
Transmit BW

(b) Receive and transmit bandwidth for varying client machine

Fig. 13: Performance of MCP processors with the varying number of client machines

increases. The distributed nature of Kafka allows for parallel
processing and efficient handling of incoming messages from
multiple machines.

Similarly, the increase in network TX packets implies that
as the number of machines increases, Kafka is transmitting a
higher volume of network packets. The distributed architecture
of Kafka enables efficient transmission of data to multiple
machines consuming the data.

VC’s AMP’s performance. Figure 12 shows the performance
of the AMP processor executing in the Kubernetes cluster. The
observed CPU usage (see Figure 12a) in the processor executing
as an AMP processor showcases the system’s ability to effi-
ciently utilize computational resources. Initially, the CPU usage
increases from 5% for 2 machines to 11% for 16 machines,
indicating that as more VMs are added, the system effectively
distributes and utilizes processing power. The subsequent de-
crease in CPU usage to 7% for 32 machines may be attributed
to optimization techniques or workload balancing mechanisms
employed within the cluster. Continuing from 32 machines,
the gradual increase in CPU usage to 10.5% for 128 machines
demonstrates the system’s ability to scale and efficiently handle
increased computational demands. This upward trend signifies

the successful utilization of CPU resources as the number of
attached machines grows. It’s important to emphasize that the
overall CPU usage remains relatively low, indicating that the
AMP processor is effectively managing resources and operat-
ing within an optimal range. Similarly, the gradual increase in
memory usage as the number of machines increases reflects the
system’s ability to accommodate growing data requirements.
From 2 GiB for 2 VMs to 12 GiB for 128 VMs, the smooth
and consistent rise in memory usage highlights the system’s
scalability and ability to efficiently store and process larger
volumes of data.

Figure 12b shows the receive and transmit bandwidth of
the same AMP processor. As the result shows, there is a slight
increase in receive and transmit bandwidth from 2 VMs to
64 VMs which demonstrates the system’s capability to handle
increased data transfer demands. This growth showcases the
ability of the processor executing as a Kubernetes cluster to
efficiently receive and transmit data across the network. The
sudden increase in values from (44, 42) KB to (200, 220)
KB respectively is due to the system’s optimized handling of
network communication provided by Kubernetes.

VC’s MCP’s performance. The performance of the Measure-

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 11

Fig. 14: User Interface of TPC

ment Configuration Processor (MCP) executing as a Kuber-
netes cluster is shown in Figure 13. As shown in Figure 13a,
the CPU usage is consistent and comparable varying slightly
from 1.9% for 2 machines to 2.1% for 128 machines. This
stability in CPU usage suggests that the MCP cluster maintains
a balanced and optimized allocation of resources, ensuring
smooth operation even as the number of machines increases.
The figure also shows the consistent memory usage which
showcases the cluster’s ability to handle the data requirements
effectively, contributing to its overall performance and stability.

Figure 13b shows the receive and transmit bandwidth
which is unchanged with 20 KB and 5.4 KB respectively.
The consistent bandwidth values demonstrate the system’s
ability to sustain a reliable and consistent network throughput,
regardless of the number of VMs involved.

5.2.3 TPC Graphical User Interface
The user interface of the TPC framework effectively balances
robust security features with user accessibility. This ensures
that administrators and IT managers can securely manage and
monitor the machines and projects regardless of the applica-
tions executing on the system. The interface is designed to
be intuitive, allowing users to define and associate projects
and machines, and configure Include lists, Exclude lists, and
Allow lists easily as shown in Figure 14. At the same time,
the interface supports real-time monitoring, enabling users to
observe the live performance and security status of machines.
This allows IT personnel to manage security for the zero-trust
without compromising usability, making it a powerful tool for
maintaining both operational efficiency and rigorous security
standards.

6 DISCUSSION

Experiment results highlight TPC’s performance in terms of
client machine tracking, system scalability and flexibility. While
this encourages the use of TPC for tracking the trust state, there
are a few other aspects to be considered as given below.

Making a generic monitoring framework. The Kernel Mod-
ule component of TPC relies on the system’s kernel version
to capture the extended IMA-based measurements. Although
the Kernel Module supports all the currently available kernel

versions, an update is required to use Kernel Module on a new
kernel version. We are working on making the Kernel Module
generic enough to be used on any kernel version. [32] uses an
extended Berkely Packet Filters (eBPF)-based system to moni-
tor the basic kernel operations. Developing similar techniques
to adapt TPC to capture the extended-IMA measurements is
also part of our future work plan.
Automate the decision-making process. The Verification Clus-
ter notifies the administrator of the client machine’s becoming
untrusted. A follow-up operation is performed by the admin-
istrator to verify the reason for making the client machine
untrusted. A system re-evaluation is performed after this pro-
cess either making the system state permanently untrusted or
changing the system state to trusted. This manual process is
time-consuming and relies on the administrator’s skills. An
intuitive model is required to automate the decision-making
process. One of our future work is to leverage a machine learn-
ing model and train it with the previous system measurements
which can later detect a system state change and makes the
decision.
Cascading of security providers. As the result shows, using
SGX-SWTPM is slower but is the most secure method. We
are planning to work on a cascading security provider to use
SGX-SWTPM periodically, according to administrator-defined
parameters while utilising either SWTPM or a local security
provider for the remaining measurements. This can guarantee
the same level of security as the SGX-SWTPM while consuming
minimal time.
Reuse the Verification Knowledge. The boundary of TPC’s
verification process is bounded on a per-project basis i.e., each
client machine has an associated set of lists (Allow List, Include
List) in the Verification Cluster attached for the verification
process. Since TPC is based on a zero-trust framework, any
update in the client’s machine needs to be verified keeping the
system trusted. However, there are some generic updates e.g.,
an update in Chrome which can happen in multiple machines.
The knowledge of successful verification on one machine can
be utilised for another machine as well. We are currently
working on automatically producing Allow Lists for popular
applications which are permitted to be on the machine.
Bring trust to the verification process. The administrator is
considered to be a trusted entity that verifies the machine sta-
tus. They are involved in updating the Allow List if the change
is found to be trusted. However, the update can be overwritten
and may lead to a lack of trust. To guarantee a chain of trust
for the administrator and to make the updates immutable, we
are planning to use Git hash values or Distributed Ledger
Technology in future work. This will let the client know of
any changes. In addition to this, any change in the Allow List
can easily be reused for different sets of machines.
Attack evaluation in staging environment. We are working on
testing the TPC framework to assess its effectiveness against
various security threats, such as Data Manipulation and Eaves-
dropping attacks. We plan to simulate these attacks within
our staging cluster environment, allowing us to rigorously
evaluate how well TPC mitigates these threats. This testing will
help us understand the TPC framework’s robustness in a live
setting and guide further refinements to enhance its security
capabilities for the production-ready environment.
Combining TPC with existing Network-based zero-trust
framework. As discussed, TPC offers protection for the host

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 12

system-level threats. One of our future work is to integrate the
TPC framework with existing network-based zero-trust frame-
works. While the network-based zero-trust framework secures
the perimeter and manages access controls, TPC ensures that
the system itself remains “Trusted”. The result is a unified Zero
Trust architecture that offers enhanced protection against a
broader range of threats from network-based attacks to internal
system vulnerabilities. We would also like to evaluate the
whole framework

7 CONCLUSION

In this paper, we proposed and evaluated TPC in different
environments. We evaluated the TPC for different security
providers with the Verification Cluster in a staging environment.
The result shows that TPC is able to detect the system’s
untrusted state in less than a minute as compared to 211 days
for a middle-sized organisation. The evaluation also shows that
the Verification Cluster, at the core of the system, is scalable with
each component showing comparable performance with the
increasing number of client machines.

ACKNOWLEDGMENT

This research was supported by the Knowledge Transfer Part-
nership (KTP) project, Trusted Public Cloud (id 11289).

REFERENCES

[1] S. Sha, “The reliability of enterprise applications,” Communications of
the ACM, vol. 63, no. 1, pp. 38–45, 2019.

[2] D. Wermke, N. Huaman, C. Stransky, N. Busch, Y. Acar, and S. Fahl,
“Cloudy with a chance of misconceptions: Exploring users’ percep-
tions and expectations of security and privacy in cloud office suites,”
in Sixteenth Symposium on Usable Privacy and Security ({SOUPS} 2020),
2020, pp. 359–377.

[3] P. Sun, “Security and privacy protection in cloud computing: Discus-
sions and challenges,” Journal of Network and Computer Applications,
vol. 160, p. 102642, 2020.

[4] F. Wang, B. Diao, T. Sun, and Y. Xu, “Data security and privacy
challenges of computing offloading in fins,” IEEE Network, vol. 34,
no. 2, pp. 14–20, 2020.

[5] J. A. De Guzman, K. Thilakarathna, and A. Seneviratne, “Security
and privacy approaches in mixed reality: A literature survey,” ACM
Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–37, 2019.

[6] D. N. Jha, G. Lenton, J. Asker, D. Blundell, and D. Wallom, “Trusted
platform module based privacy in public cloud: Challenges and
future perspective,” IEEE IT Professional, pp. 1–5, 2022.

[7] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu,
C. Luo, Y. Li, N. Qiu et al., “Diagnosing root causes of intermittent
slow queries in cloud databases,” Proceedings of the VLDB Endowment,
vol. 13, no. 8, pp. 1176–1189, 2020.

[8] H. Tabrizchi and M. K. Rafsanjani, “A survey on security challenges
in cloud computing: issues, threats, and solutions,” The journal of
supercomputing, vol. 76, no. 12, pp. 9493–9532, 2020.

[9] R. Khandelwal, T. Linden, H. Harkous, and K. Fawaz, “Prisec: A
privacy settings enforcement controller,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[10] C. Stergiou, K. E. Psannis, B. B. Gupta, and Y. Ishibashi, “Security,
privacy & efficiency of sustainable cloud computing for big data &
iot,” Sustainable Computing: Informatics and Systems, vol. 19, pp. 174–
184, 2018.

[11] L. Zhao and D. Lie, “Is hardware more secure than software?” IEEE
Security & Privacy, vol. 18, no. 5, pp. 8–17, 2020.

[12] S. F. J. J. Ankergård, E. Dushku, and N. Dragoni, “State-of-the-art
software-based remote attestation: Opportunities and open issues for
internet of things,” Sensors, vol. 21, no. 5, p. 1598, 2021.

[13] S. Ameer, L. Praharaj, R. Sandhu, S. Bhatt, and M. Gupta, “Zta-iot: A
novel architecture for zero-trust in iot systems and an ensuing usage
control model,” ACM Transactions on Privacy and Security, 2024.

[14] Y. Liu, X. Xing, Z. Tong, X. Lin, J. Chen, Z. Guan, Q. Wu, and
W. Susilo, “Secure and scalable cross-domain data sharing in zero-
trust cloud-edge-end environment based on sharding blockchain,”
IEEE Transactions on Dependable and Secure Computing, 2023.

[15] B. Ali, M. A. Gregory, S. Li, and O. A. Dib, “Implementing zero trust
security with dual fuzzy methodology for trust-aware authentication
and task offloading in multi-access edge computing,” Computer Net-
works, vol. 241, p. 110197, 2024.

[16] Q. Shen and Y. Shen, “Endpoint security reinforcement via integrated
zero-trust systems: A collaborative approach,” Computers & Security,
vol. 136, p. 103537, 2024.

[17] R. Geng, C. Fang, S. Guo, D. Kang, B. Lyu, S. Zhu, and P. Cheng,
“Flowpinpoint: Localizing anomalies in cloud-client services for
cloud providers,” IEEE Transactions on Cloud Computing, 2023.

[18] B. Shen, H. Yu, P. Hu, H. Cai, J. Guo, B. Xu, and L. Jiang, “A cloud-
edge collaboration framework for generating process digital twin,”
IEEE Transactions on Cloud Computing, 2024.

[19] R. Xin, P. Chen, P. Grosso, and Z. Zhao, “A fine-grained robust
performance diagnosis framework for run-time cloud applications,”
Future Generation Computer Systems, 2024.

[20] A. Noor, D. N. Jha, K. Mitra, P. P. Jayaraman, A. Souza, R. Ranjan,
and S. Dustdar, “A framework for monitoring microservice-oriented
cloud applications in heterogeneous virtualization environments,” in
2019 IEEE 12th international conference on cloud computing (CLOUD).
IEEE, 2019, pp. 156–163.

[21] X. Zhou, B. Ahmed, J. H. Aylor, P. Asare, and H. Alemzadeh, “Hy-
brid knowledge and data driven synthesis of runtime monitors for
cyber-physical systems,” IEEE Transactions on Dependable and Secure
Computing, 2023.

[22] N. Rajesh, H. Devarajan, J. C. Garcia, K. Bateman, L. Logan, J. Ye,
A. Kougkas, and X.-H. Sun, “Apollo: An ml-assisted real-time storage
resource observer,” in Proceedings of the 30th International Symposium
on High-Performance Parallel and Distributed Computing, 2021, pp. 147–
159.

[23] B. Yang, W. Xue, T. Zhang, S. Liu, X. Ma, X. Wang, and W. Liu, “End-
to-end i/o monitoring on leading supercomputers,” ACM Transactions
on Storage, vol. 19, no. 1, pp. 1–35, 2023.

[24] U. Demirbaga, A. Noor, Z. Wen, P. James, K. Mitra, and R. Ranjan,
“Smartmonit: Real-time big data monitoring system,” in 2019 38th
symposium on reliable distributed systems (SRDS). IEEE, 2019, pp. 357–
3572.

[25] W. Huang, T. Li, J. Liu, P. Xie, S. Du, and F. Teng, “An overview of air
quality analysis by big data techniques: Monitoring, forecasting, and
traceability,” Information Fusion, vol. 75, pp. 28–40, 2021.

[26] “Amazon cloudwatch,” https://aws.amazon.com/cloudwatch/, ac-
cessed: 2024-03-07.

[27] “Azure monitor,” https://azure.microsoft.com/en-gb/products/
monitor/, accessed: 2024-03-07.

[28] “Dynatrace: Cloud monitoring,” https://www.dynatrace.com/
platform/applications-microservices-monitoring/, accessed: 2024-
03-07.

[29] K. Vijayakumar and C. Arun, “Continuous security assessment of
cloud based applications using distributed hashing algorithm in
sdlc,” Cluster Computing, vol. 22, no. 5, pp. 10 789–10 800, 2019.

[30] T. Zhang, M. L. Rahman, H. M. Kamali, K. Z. Azar, and F. Farah-
mandi, “Sipguard: Run-time system-in-package security monitoring
via power noise variation,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2023.

[31] “Datadog: Modern monitoring & security,” https://www.datadoghq.
com/, accessed: 2024-03-07.

[32] D. N. Jha, G. Lenton, J. Asker, D. Blundell, and D. Wallom, “Holistic
runtime performance and security-aware monitoring in public cloud
environment,” in 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 2022, pp. 1052–1059.

[33] S. Laurén and V. Leppänen, “Virtual machine introspection based
cloud monitoring platform,” in Proceedings of the 19th International
Conference on Computer Systems and Technologies, 2018, pp. 104–109.

[34] S. Geissler, S. Lange, F. Wamser, T. Zinner, and T. Hoßfeld,
“Komon—kernel-based online monitoring of vnf packet processing
times,” in 2019 International Conference on Networked Systems (NetSys).
IEEE, 2019, pp. 1–8.

[35] A. Mayer, P. Loreti, L. Bracciale, P. Lungaroni, S. Salsano, and C. Fils-
fils, “Performance monitoring with hˆ2: Hybrid kernel/ebpf data
plane for srv6 based hybrid sdn,” Computer Networks, vol. 185, p.
107705, 2021.

[36] M. H. Nasir, S. A. Khan, M. M. Khan, and M. Fatima, “Swarm intel-
ligence inspired intrusion detection systems—a systematic literature
review,” Computer Networks, p. 108708, 2022.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ??, ??? 13

[37] Z. Halim, M. N. Yousaf, M. Waqas, M. Sulaiman, G. Abbas, M. Hus-
sain, I. Ahmad, and M. Hanif, “An effective genetic algorithm-based
feature selection method for intrusion detection systems,” Computers
& Security, vol. 110, p. 102448, 2021.

[38] S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, M. Alazab,
S. Bhattacharya, P. K. R. Maddikunta, and T. R. Gadekallu, “Federated
learning for intrusion detection system: Concepts, challenges and
future directions,” Computer Communications, 2022.

[39] H. Yan, X. Li, W. Zhang, R. Wang, H. Li, X. Zhao, F. Li, and X. Lin,
“Automatic evasion of machine learning-based network intrusion
detection systems,” IEEE Transactions on Dependable and Secure Com-
puting, 2023.

[40] H. Sun, M. Chen, J. Weng, Z. Liu, and G. Geng, “Anomaly detection
for in-vehicle network using cnn-lstm with attention mechanism,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10 880–
10 893, 2021.

[41] A. Oseni, N. Moustafa, G. Creech, N. Sohrabi, A. Strelzoff, Z. Tari,
and I. Linkov, “An explainable deep learning framework for resilient
intrusion detection in iot-enabled transportation networks,” IEEE
Transactions on Intelligent Transportation Systems, 2022.

[42] Y. Wu, Y. Xie, X. Liao, P. Zhou, D. Feng, L. Wu, X. Li, A. Wildani,
and D. Long, “Paradise: real-time, generalized, and distributed
provenance-based intrusion detection,” IEEE Transactions on Depend-
able and Secure Computing, 2022.

[43] J. Cui, H. Sun, H. Zhong, J. Zhang, L. Wei, I. Bolodurina, and
D. He, “Collaborative intrusion detection system for sdvn: A fairness
federated deep learning approach,” IEEE Transactions on Parallel and
Distributed Systems, 2023.

[44] M. Verkerken, L. D’hooge, D. Sudyana, Y.-D. Lin, T. Wauters, B. Volck-
aert, and F. De Turck, “A novel multi-stage approach for hierarchical
intrusion detection,” IEEE Transactions on Network and Service Manage-
ment, 2023.

[45] M. Gorbett, H. Shirazi, and I. Ray, “Local intrinsic dimensionality
of iot networks for unsupervised intrusion detection,” in Data and
Applications Security and Privacy XXXVI: 36th Annual IFIP WG 11.3
Conference, DBSec 2022, Newark, NJ, USA, July 18–20, 2022, Proceedings.
Springer, 2022, pp. 143–161.

[46] I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, and J. Gama,
“Host-based ids: A review and open issues of an anomaly detection
system in iot,” Future Generation Computer Systems, 2022.

[47] M. Higgins, D. Jha, and D. Wallom, “Spatial-temporal anomaly detec-
tion for sensor attacks in autonomous vehicles,” in 2023 IEEE Smart
World Congress (SWC). IEEE, 2023, pp. 783–788.

[48] O. Ghazali, A. M. Tom, H. M. Tahir, S. Hassan, S. A. Nor, and
A. H. Mohd, “Security measurement as a trust in cloud computing
service selection and monitoring,” Journal of Advances in Information
Technology Vol, vol. 8, no. 2, 2017.

[49] L. Guo, H. Yang, K. Luan, Y. Luo, L. Sun et al., “A trust model
based on characteristic factors and slas for cloud environments,” IEEE
Transactions on Network and Service Management, 2023.

[50] S. Rizvi, K. Karpinski, B. Kelly, and T. Walker, “Utilizing third party
auditing to manage trust in the cloud,” Procedia Computer Science,
vol. 61, pp. 191–197, 2015.

[51] G. Aghaee Ghazvini, M. Mohsenzadeh, R. Nasiri, and A. Ma-
soud Rahmani, “Mmlt: A mutual multilevel trust framework based on
trusted third parties in multicloud environments,” Software: Practice
and Experience, vol. 50, no. 7, pp. 1203–1227, 2020.

[52] A. Balcao-Filho, N. Ruiz, F. Rosa, R. Bonacin, and M. Jino, “Applying a
consumer-centric framework for trust assessment of cloud computing
service providers,” IEEE Transactions on Services Computing, 2021.

[53] D. Wallom, A. Ruan, and D. Blundell, “Porridge: A method of
providing resilient and scalable cloud-attestation-as-a-service,” in
12th International Conference on System Safety and Cyber-Security 2017
(SCSS). IET, 2017, pp. 1–6.

[54] A. Muñoz and E. B. Fernandez, “Tpm, a pattern for an architecture
for trusted computing,” in Proceedings of the European Conference on
Pattern Languages of Programs 2020, 2020, pp. 1–8.

[55] C. Han, T. Kim, W. Lee, and Y. Shin, “S-zac: Hardening access control
of service mesh using intel sgx for zero trust in cloud,” Electronics,
vol. 13, no. 16, p. 3213, 2024.

Devki Nandan Jha is currently a Lecturer at New-
castle University, Newcastle Upon Tyne, UK. He is
also a visiting researcher at the Oxford e-Research
Centre, University of Oxford. Previously, he was a
Research Associate with Oxford e-Research Cen-
tre, University of Oxford, Oxford and CyberHive Ltd.,
Newbury, UK. He has a PhD in Computer Science
from Newcastle University, Newcastle Upon Tyne,
UK. His research interests include cloud computing,
internet of things, trust and security, and machine
learning.

Graham Lenton is currently the Head of Engineer-
ing at CyberHive Ltd. Before joining CyberHive, Gra-
ham led the development team at BBC Monitor-
ing, UK. He has more than 25 years of Industry
experience in development and management. His
research interests include cloud computing, trusted
computing, secure networking and software integra-
tion.

James Asker is a Development Supervisor at Cy-
berHive, and has 15 years of Industry experience
in systems engineering and administration. His re-
search interests are secure cloud computing and
Linux kernel security.

David Blundell is the founder, MD and CTO of
CyberHive Ltd. His current research interests are
secure distributed computing, autonomous vehicles
and post-quantum encryption.

Martin Higgins (S’19) received a BSc in Physics
from Queen Mary, University of London, in 2011,
an MSc from Imperial College London, UK, in
2012, MRES from the University of Strathclyde in
2018 and PhD from Imperial College in 2022. He
is currently a research associate at the Univer-
sity of Oxford on the Digital Security by Design
Project. His research interests lie in power systems,
cyber-security, false data injection attacks, and au-
tonomous vehicles.

David C.H. Wallom is currently an Associate Direc-
tor of Innovation with the Oxford e-Research Centre,
University of Oxford. He was the Technical Director
of the U.K. National Grid Service until the closure of
the service and is the Current Chair of the European
Grid Infrastructure Federated Cloud Task Force. His
current research interests include applications and
reuse of e-infrastructure, as well as the application
of high-performance computing techniques and cy-
bersecurity.

